Modus ponens – a logical implication

(P ^ (P => Q)) => Q named Modus ponens meaning affirms by affirming – affirming the antecedent/premise P

If the compound statement (P ^ (P => Q)) => Q is given and is true (it is always true) and P => Q is true then P must be true – therefore Q must be true (see truth table to follow the reasoning).

P => Q (If P => Q is true then...)
P (must be true)
therefore Q must be true.

In English:
P = today is Tuesday
Q = I will go to work

If today is Tuesday, then I will go to work.
Today is Tuesday.
Therefore, I will go to work.

Picture 15

In instances of modus ponens we assume as premises that p => q is true and p is true. Only one line of the truth table – the last – satisfies these two conditions. On this line, q is also true. Therefore, whenever p => q is true and p is true, q must also be true

Picture 6

3 no namers – logical implications
Hypothetical Syllogism – a logical implication
Disjunctive Syllogism – a logical implication
Simplification – a logical implication
Addition – a logical implication
Modus tollens – a logical implication
Modus ponens – a logical implication
Logical Implications

see Wikipedia

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s