**P => (P v Q) ** meaning, P implies (P or Q)

If the compound statement P=>(P v Q) is given and is true (it is always true) then we can conclude P by just taking P.

If P = the traffic light is green

and Q = the traffic light is red.

Then in English, P=>(P v Q ) will be “If the traffic light is green then the traffic light is green or (otherwise) the traffic light is red”. As mentioned, this compound statement is always true.

So, If the compound expression (P => (P v Q)) is given, we know it is true, so we can always conclude P by just taking P.

Suppose that, it is false that (P) the traffic light is green,

Suppose that, it is true that (Q) the traffic light is red,

Then we can conclude that it is false that the traffic light is green, because P is false.

Suppose that, it is true that (P) the traffic light is green,

Suppose that, it is false that (Q) the traffic light is red,

Then we can conclude that it is true that the traffic light is green, because P is true.

Suppose that it is true that (P) the traffic light is green,

Suppose that it is true that (Q) the traffic light is red,

Then normally we would conclude that the traffic light is broken, but in this case, logically we would conclude that the traffic light is green because P is true.

Suppose that it is true that (P) the traffic false is green,

Suppose that it is true that (Q) the traffic false is red,

Again, normally we would conclude that the traffic light is broken, but in this case, logically we would conclude that it is false that the traffic light is green because P is false.

In the truth table we can see the tautology in P=>(P v Q) – the compound statement is always true – which proves what we have said in the examples.

3 no namers – logical implications

Hypothetical Syllogism – a logical implication

Disjunctive Syllogism – a logical implication

Simplification – a logical implication

Addition – a logical implication

Modus tollens – a logical implication

Modus ponens – a logical implication

Logical Implications